
Parallel Computing 109 (2022) 102871

A
0

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Using long vector extensions for MPI reductions
Dong Zhong ∗, Qinglei Cao, George Bosilca, Jack Dongarra
The University of Tennessee, 1122 Volunteer Blvd, Knoxville, TN 37996, United States of America

A R T I C L E I N F O

Keywords:
Long vector extension
Vector operation
Intel AVX2/AVX-512
Instruction level parallelism
Single instruction multiple data
MPI reduction operation
Scalable Vector Extension (SVE)

A B S T R A C T

The modern CPU’s design, including the deep memory hierarchies and SIMD/vectorization capability have
a more significant impact on algorithms’ efficiency than the modest frequency increase observed recently.
The current introduction of wide vector instruction set extensions (AVX and SVE) motivated vectorization to
become a critical software component to increase efficiency and close the gap to peak performance.

In this paper, we investigate the impact of the vectorization of MPI reduction operations. We propose an
implementation of predefined MPI reduction operations using vector intrinsics (AVX and SVE) to improve
the time-to-solution of the predefined MPI reduction operations. The evaluation of the resulting software
stack under different scenarios demonstrates that the approach is not only efficient but also generalizable
to many vector architectures. Experiments conducted on varied architectures (Intel Xeon Gold, AMD Zen
2, and Arm A64FX), show that the proposed vector extension optimized reduction operations significantly
reduce completion time for collective communication reductions. With these optimizations, we achieve higher
memory bandwidth and an increased efficiency for local computations, which directly benefit the overall cost
of collective reductions and applications based on them.
1. Introduction

The need to satisfy the scientific computing community’s increasing
computational demands drives larger HPC systems with more complex
architectures. This provides more opportunities to enhance various
parallelism levels. Instruction-level (ILP) and thread-level parallelism
(TLP) has been extensively studied, but data-level parallelism (DLP) is
usually underutilized in CPUs, despite its vast potential. While ILP’s
importance subsides, DLP’s becomes a critical factor in improving
the efficiency of microprocessors [1–5]. The most widespread vector
implementation is based on single-instruction multiple-data (SIMD)
extensions. Vector architectures are designed to improve DLP by si-
multaneously processing multiple input data with a single instruction,
usually applied to vector registers. SIMD instructions have been gradu-
ally included in microprocessors, with each new generation providing
more sophisticated, powerful, and flexible instructions. The higher
investment in SIMD resources per core makes extracting these vector
units’ full computational power highly significant.

A large body of literature has focused on employing DLP via vector
execution and code vectorization [6–8], transforming the way compil-
ers generate code for these architectures. HPC, with its ever-growing
demand for computing capabilities, has been quick to embrace vector
processors and harness the additional compute power. As an essential
factor of processors’ capability to apply a single instruction on multiple
data, vectorization continuously improves from one CPU generation

∗ Corresponding author.
E-mail addresses: dzhong@vols.utk.edu (D. Zhong), qcao3@vols.utk.edu (Q. Cao), bosilca@icl.utk.edu (G. Bosilca), dongarra@icl.utk.edu (J. Dongarra).

to the next, including using increasingly larger vector registers, and
gathering/scattering capabilities. Compared to traditional scalar pro-
cessors, extension vector processors support SIMD and more powerful
instructions operating on vectors with multiples elements. They can
generate memory accesses and data computations faster by orders of
magnitude. Over the last decade, the difference between a scalar code
and its vectorized equivalent increased from a factor of 4 with SSE, up
to a factor of 16 with AVX-512 [9–11], highlighting the importance
of employing vectorized code whenever possible. The conversion of a
scalar code into a vectorized equivalent can be relatively straightfor-
ward for many affine classes of algorithms and computational kernels,
and can be done automatically, with little human intervention, by a
compiler with auto-vectorization capabilities. The compiler can provide
a baseline for more complex codes, but developers are also encouraged
to offer optimized versions using widely available compilers intrinsics.

There are efforts to improve the vector processors by increasing the
vector length and adding new vector instructions. For example, Intel’s
first version of vectorized instruction set, MMX, was quickly superseded
by more advanced vector integer SSE and AVX instructions [12–14].
Later, it was expanded to Haswell instructions as 256 bits (AVX2), and
followed with the arrival of the Knights Landing processor [11]. The
more advanced AVX-512 [15] was introduced supporting 512-bit wide
SIMD registers (ZMM0-ZMM31), as shown in Fig. 1. The lower 256-
bits of the ZMM registers are aliased to the respective 256-bit YMM
vailable online 5 December 2021
167-8191/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.parco.2021.102871
Received 15 February 2021; Received in revised form 27 September 2021; Accepte
d 8 November 2021

http://www.elsevier.com/locate/parco
http://www.elsevier.com/locate/parco
mailto:dzhong@vols.utk.edu
mailto:qcao3@vols.utk.edu
mailto:bosilca@icl.utk.edu
mailto:dongarra@icl.utk.edu
https://doi.org/10.1016/j.parco.2021.102871
https://doi.org/10.1016/j.parco.2021.102871
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2021.102871&domain=pdf

Parallel Computing 109 (2022) 102871D. Zhong et al.
Fig. 1. AVX512-Bit wide vectors and SIMD register set.

registers, and the lower 128-bit are aliased to the respective 128-bit
XMM registers. The AVX-512 features and instructions provide a sig-
nificant advantage to 512-bit SIMD support. This product offers a high
degree of compiler support in designing the instructions. Compared to
previous architectures, AVX-512 leverages longer and more powerful
registers capable of packing eight double-precision, or sixteen single-
precision floating-point numbers, eight 64-bit integers, or sixteen 32-bit
integers within the same 512-bit vector. It also enables processing twice
the amount of data elements than Intel AVX2, and four times than SSE
with a single instruction. Furthermore, AVX-512 also supports a richer
set of features, such as operations on packed floating-point data or
packed integer data, new arithmetic and shifting operations, additional
gather/scatter support, high-speed math instructions, and the ability to
have optional capabilities beyond the basic instruction set.

AVX-512 takes advantage of using long vectors and enables power-
ful vectorization features that can achieve significant speedup. A small
subset of these features is listed below.

1. a rich addressing mode enabling non-linear data accesses for
support of non-contiguous data;

2. a set of horizontal reduction operations, which apply to more
types of reducible loop carried dependencies including both log-
ical, integer, and floating-point of high-speed math reductions,
and

3. the capability of vectorization of loops with complex loop car-
ried dependencies and control flow constraints.

Similarly, Arm announced the new Armv8 architecture embracing
SVE- a vector extension for the AArch64 execution mode for the A64
instruction set of the Armv8 architecture [16,17]. Unlike other SIMD
architectures, SVE does not define the size of the vector registers.
Instead, it provides a range of different values that permit vector
code to automatically adapt to the current vector length at runtime
with the feature of Vector Length Agnostic (VLA) programming [18,19].
Currently, vector length constrains are in the range from a minimum
of 128 bits up to a maximum of 2048 bits in increments of 128 bits.

At the other end of the programming spectrum, Message Passing
Interface (MPI) [20] is a popular, efficient, and portable parallel pro-
gramming paradigm for distributed memory systems. It is widely used
in scientific applications. The MPI standard provides a fully fledged
set of communication primitives, between pairs or between groups of
processes, allowing applications to precisely tailor the communication
pattern to their needs. Optimized support for two-sided communica-
tions and collective communications has been beneficial for a large
number of parallel applications. For example, machine learning ap-
plications running on distributed systems critically depend on the
performance of MPI_Allreduce, a reduction operation for extensive data
sets to synchronize updating the weights matrix.

Computation-oriented collective operations such as MPI_Allreduce
and MPI_Reduce perform reductions on data along with the communi-
cations performed by collectives. These collectives typically encompass
a linear, memory-bound operation, which forces the computation to
become the main bottleneck and limit the overall performance of
2

the collective implementation. The existence of advanced architectural
features introduced with wide vector extension and specialized arith-
metic operations, highlights a path forward toward addressing this
bottleneck in MPI libraries, by providing support for such extensions
via specialized reduction operators capable of extracting most of the
processor’s computational power.

Unlike more traditional HPC applications that embraced MPI long
ago, machine learning and data science, in general, were more reticent.
However, a new trend arise lately, certainly linked to the growth of the
problems’ size and the strain it puts on the memory bandwidth, toward
an increased use of MPI for the distributed training.

As mentioned before, reduction operations with a large amount of
data (from the weights on a layer of neurons) is an expensive step in
the learning process. Such reduction operations in machine learning
applications are commonly seen in synchronous parameter updates of
the distributed Stochastic Gradient Descent (SGD) optimization [21].
This is used extensively in, for example, neural networks, linear re-
gressions, and logistic regressions. Moreover, there are two important
aspects to the use of these reduction operations: 1) the process is
iterative until a convergence criteria is met, which translates to a large
number of reduction operations, and 2) the amount of data involved
in each reduction operation is considerable (with an extensive training
model, the data could be in the hundreds of megabytes). Li’s [22]
work explores the performance of MPI_Allreduce algorithms and uses
task-based frameworks to improve their performance. Specifically when
referring to AlexNet on ImageNet [23], it is highlighted that each
step needs to perform a weights reduction with an estimated size of
200MB for extensive model training. Similarly, [24] illustrates that
with SparkNet, updating the weights of AlexNet, a single reduce op-
eration takes almost 20 s, even with only five processes. While it is
relatively simple to scale the number of execution processes to the
thousands, the bottleneck remains the MPI_Allreduce of the gradient
values at each step. Indeed, the size of the gradient being reduced is
equivalent to the size of the model, and independent of the number of
participating processes. When scaling to large numbers of processes,
the full parameter set, commonly hundreds of megabytes, must be
summed globally at each iteration, until convergence. This explains
why the reduction operation dominates the overall time-to-solution
in distributed neural network training, highlighting the need for an
efficient reduction implementation.

Thus, it will be crucial for many applications to have access to
a highly optimized version of MPI_Allreduce, and this requires ad-
dressing the challenge of improving the performance of the predefined
MPI reduction operations. We address the above challenges and pro-
vide designs and implementations for most of the predefined reduc-
tion operations, which are used by MPI_Reduce, MPI_Allreduce and
MPI_Reduce_local. We propose extensions to multiple MPI reduction
methods to take full advantage of long vector extension capabilities to
efficiently perform these operations.

This paper makes the following contributions:

1. We investigate and utilize long vector arithmetic instructions/in-
trinsics (AVX and SVE) to optimize and speed up various MPI
reduction operations.

2. We perform experiments using the new implementations of re-
duction operations in the scope of Open MPI on different ar-
chitectures. Different types of experiments are conducted with
MPI benchmark, performance evaluation tools, and deep learn-
ing benchmark. Furthermore, our implementation provides use-
ful insight and guidelines on how vector ISA can be used in
high-performance computing platforms and software.

The rest of this paper is organized as follows: Section 2 presents
related studies about the use of vectorized extensions, AVX and SVE, in
software development, together with a survey about MPI optimizations
making use of novel hardware. Section 3 describes the implementation
details of our optimized reduction methods in the scope of Open MPI

Parallel Computing 109 (2022) 102871D. Zhong et al.

u

using AVXs and SVE intrinsics and instructions. Section 4 describes
the performance difference between a vectorized and a non-vectorized
implementation of the MPI_Allreduce collective and provides a distinct
insight on how MPI implementations can benefit from these new vector
instructions. Section 5 uses a performance tool on Xeon processor to
details the relationship between performance and vectorized instruc-
tion counts. Section 6 illustrates the performance benefits achieved
by running tests using LAMMPS benchmark. Section 7 illustrates our
optimized reduction operation’s performance benefits in Open MPI
using a deep learning application.

2. Related work

Techniques can be classified according to the level at which the
hardware supports parallelism with multi-core and multi-processor
computers having multiple processing elements within a single ma-
chine. Different level of parallelization, including bit-level, instruction-
level, data-level, and task parallelism, are studied. In this section,
we survey related work on techniques taking advantage of advanced
hardware or architectures, which focus on data-level parallelization.
Novel processors and hardware architectures from vendors, such as
Intel and Arm, come equipped with long vector extensions, and mul-
tiple researchers have studied the usage of those new technologies in
high-performance computing with various programming models and
applications.

2.1. Long vector extension

Lim [25] explored the generalized matrix–matrix multiplication
(GEMM) based on a blocked matrix multiplication algorithm to improve
data reuse. Using Intel AVX-512 intrinsics together with a carefully de-
signed data prefetching and loop unrolling they optimized the blocked
matrix multiplications, achieving an outstanding level of performance
for the GEMM operation with single and multiple cores. Kim [26]
presented an optimal implementation of single-precision and double-
precision general matrix–matrix multiplication (GEMM) routines based
on an auto-tuning approach with the Intel AVX-512 intrinsic func-
tions. The implementation significantly diminished the search space
and derived optimal parameter sets, including the size of submatrices,
prefetch distances, loop unrolling depth, and parallelization scheme.
Bramas [27] introduced a novel quicksort algorithm with a new Bitonic
sort and a new partition algorithm designed for the AVX-512 in-
struction set, which showed superior performance on Intel Skylake
in all configurations against two standard reference libraries. A little
closer to MPI, Dosanjh et al. [28] proposed and evaluated a novel
message matching method Fuzzy-matching to improve the point to
point communication performance in MPI with multithreading enabled.
The proposed algorithm took advantage of the AVX vector operation
to accelerate matches and demonstrated that the benefits of vector
operation are not only restricted to computational intensive operations,
but can positively impact MPI matching engines. They also presented
an optimistic matching scheme that uses partial truth in matching
elements to accelerate matches. Intel AVX is not the only ISA to propose
vectorized extensions. Similar studies have been done using Arm’s new
Scalable Vector Extensions (SVE). In [29], the authors leveraged the
characteristics of SVE to implement and optimize stencil computations,
biquitous in scientific computing, which showed that SVE enabled the

easy deployment of optimizations like loop unrolling, loop fusion, load
trading, or data reuse. Petrogalli’s work [30] explored the usage of SVE
vector multiply instructions to optimize matrix multiplication in ma-
chine learning algorithms. Zhong [31,32] used new features from long
vector extension from different architectures to optimize Open MPI.
[33] propose an optimized Sparse Matrix–Vector multiplication using
long vector ISAs to handle sparse and irregular data access. All these
studies focused on using the new vector instructions to improve a spe-
cific application’s or a specific mathematical algorithm performance. In
3

the work described in this paper, we provide a comprehensive study of
AVX-512 usage in the context of MPI, more specifically for all supported
mathematical reduction functions and provide a detailed analysis of the
efficiency obtained in these context using the related intrinsics.

2.2. MPI reduction operation

There is a rich literature on optimizing the MPI reduction opera-
tions, covering all aspects of the software and hardware stack. Traff
[34] proposed an implementation of MPI library internal reduce opera-
tors allowing MPI reduction operations to be performed on sparse input
vectors, to accommodate for the sparsity of the connection weights
in neuronal networks. Hofmann [35] presented a pipeline algorithm
for MPI Reduce that used a Run Length Encoding scheme to improve
the global reduction of sparse floating-point data. Chu [36] analyzed
the limitations of the compute oriented CUDA-Aware collectives and
proposed alternative designs and schemes by combining the exploita-
tion GPU’s compute capability and their fast communication path using
the GPUDirect RDMA feature to alleviate these limitations efficiently.
Luo [37] presented HAN, a hierarchical, architecture-aware autotuned
collective communication framework in Open MPI. HAN selects suit-
able homogeneous collective communication modules as sub-modules
for each hardware level, and uses collective operations from the sub-
modules as asynchronous tasks with data dependencies, and organizes
these tasks to perform efficient collective operations.

Patarasuk’s work [38] investigated implementations of the
MPI_Allreduce operation with large data sizes, derived a theoreti-
cal lower bound on this operation’s communication time, and devel-
oped a bandwidth optimal MPI_Allreduce algorithm on tree topolo-
gies. Shan [39] proposed using idle threads on a many-core node
to accelerate the local reduction computations and utilized the data
compression technique to compress sparse input data for reduction.
Both approaches (threading and exploitation of sparsity) helped ac-
celerate MPI reductions on large vectors when running on many-core
supercomputers.

Most of those works focus on improving the performance of col-
lective communication either by making a better use of the network
resources or by hiding the communication latency behind computation,
or by specializing the reduction operator to the target application or
hardware. Our long vector extension arithmetic reduction optimiza-
tions seek to be more general and take advantage of vector extensions
to provide a straightforward set of predefined MPI reduction operations
with no specialized or restricted data representation or operations lim-
itation. The provided implementation supports multiple ISAs, covering
most processor versions from different vendors, and supports multi-
ple generations of vector instructions, including legacy SSE, advanced
AVXs, and SVE.

3. Design and implementation

3.1. Intel Advanced Vector Extension

Intel Advanced Vector Extension 2 (Intel AVX2), is a significant
improvement to Intel Architecture, and extends the previous generation
of 128-bit SIMD float-point and integer instructions to operate on
larger registers, 256-bit YMM registers, therefore executing twice as
many operations in the same number of cycles. In addition to these
extensions it adds new data manipulation primitives, such as broadcast,
permute/variable-shift instructions, masked operations and instructions
to fetch and store non-contiguous data elements to and from memory.
Starting from the Haswell processors family, all Intel processors and
microarchitectures support these 256-bit AVX2 instructions with low
latency and high throughput.

Building over AVX2, Intel Advanced Vector Extensions 512 (Intel
AVX-512) provides more powerful packing capabilities with longer
vector length (512 bits instead of 256) allowing to encapsulating eight

Parallel Computing 109 (2022) 102871D. Zhong et al.
Fig. 2. Arm SVE registers.

double-precision, sixteen single-precision floating-point numbers, eight
64-bit integers, or sixteen 32-bit integers within a single vector register.
The longer vector registers allow to process twice the number of data
elements than what the Intel AVX/Intel AVX2 could process with a
single instruction and four times than that of SSE. The larger number of
vector registers (32 vector registers, each 512 bits wide, and eight ded-
icated mask registers), increase the opportunities for data parallelism
at the processor level, providing more compute power for demanding
computational tasks.

Furthermore, some performance-impacting restrictions have been
lifted compared with prior version. As an example, applications using
AVX and SSE instruction simultaneously suffered performance penal-
ties, while mixinf AVX-512 instructions with any prior AVX version
is supported with no penalties. AVX registers YMM0–YMM15 map
into the Intel AVX-512 registers ZMM0–ZMM15, similar to how SSE
registers map into AVX registers. Therefore, in processors with Intel
AVX-512 support, AVX and AVX2 instructions operate on the lower 128
or 256 bits of the first 16 ZMM registers.

3.2. Arm-v8 Scalable Vector Extension

Arm introduced Scalable Vector Extension (SVE) [40] starting with
the Arm-v8 architecture. As show in Fig. 2, SVE introduced 16 predicate
(P) registers and 32 data (Z) registers. With the long vector extension,
the new architecture supports variable vector length in the range of 128
bits up to 2048 bits. It provides support allowing the vectorized code
to automatically adapt to the current vector length at runtime when
using the Vector Length Agnostic (VLA) programming feature. Similar
to AVX, SVE also supports the entire family of horizontal reduction
instructions including integer and floating-point summation, minimum,
maximum, and bit-wise logical reductions.

3.3. Intrinsics

Intrinsics are built-in functions providing a more user-friendly ac-
cess to the ISA functionality, using C/C++ style coding instead of
assembly language. There is a clear lack of portability at this level,
each vendor defining its own set of intrinsic functions, either with full
support on some compilers, or as compiler-agnostic header files. Access
to these intrinsics empower programmers, providing direct access to
low-level instructions and enable algorithm design and implementation
where the compiler will perform the complex task of register allocation
and instruction scheduling wherever possible. The use of intrinsic
allows developers to obtain performance close to the levels achiev-
able and feasible with assembly. The cost of writing and maintaining
programs with intrinsics is considerably less than writing assembly
code, and considerable help is provided by the compilers. The major
drawback of intrinsics is their limited portability, each set of intrinsics
are only portable among a specific architecture (x86 and AArch64) of
4

Fig. 3. Open MPI architecture. The orange box represents component with added
AVX-512 reduction features.

processors. In summary, the intrinsic function provides the capability
for SIMD instructions to be manipulated faster, more proficiently and
more effectively. The following AVX-512 and SVE intrinsic functions
are of interested for the effort described in this paper:

__m512i _mm512_loadu_si512 (void const* mem_addr)
Load 512-bits of integer data from memory into a register.
The mem_addr does not need to be aligned on any particular
boundary. Generally, this intrinsic is converted into:
vmovdqu32 zmm, m512.
__m512i _mm512_ ⟨𝑜𝑝⟩ _epi32 (__m512i a, __m512i b) Apply ⟨𝑜𝑝⟩
between packed 32-bit integers in ‘‘a" and ‘‘b", and store the
results in a 512-bits vector. Here we use 32-bits integer as an
example. Generally, this intrinsic is converted into:
vp ⟨𝑜𝑝⟩ m512, m512, m512.
__m512i _mm512_storeu_si512 (void const* mem_addr, __m512i
a) Store 512-bits of integer data from ‘‘a" into
memory. mem_addr does not need to be aligned on any particu-
lar boundary. Generally, this intrinsic is converted into:
vmovdqu32 m512, zmm.
svint32_t vsrc = svld1(svbool_t pg, void const* mem_addr) Load
data from memory into a SVE long vector with predicate register.
svint32_t vsrc = svst1(svbool_t pg, void const* mem_addr,
svint32_t a) Store data from ‘‘a" into memory, data length adapt
automatically to the current vector length at runtime.
svint32_t sv_ ⟨𝑜𝑝⟩_x (svbool_t pg, svint32_t a, svint32_t b) Apply
⟨𝑜𝑝⟩ with SVE reduction intrinsic between packed 32-bit integers
in ‘‘a" and ‘‘b".

3.4. Reduction operation in Open MPI

We implement our advanced reduction operations with AVX, AVX2,
AVX-512 support in a component in Open MPI, based on a Modular
Component Architecture [41,42] that facilitates extending or substi-
tuting Open MPI core subsystem with new features and innovations,
as in Fig. 3. Open MPI architecture has three main abstraction layers:
Open MPI layer (OMPI), Runtime layer (PRRTE) and Open Portable
Access Layer (OPAL) We add our long vector reduction optimization in
a specialized component at OMPI layer that implements all predefined
MPI reduction operations with vector reduction instructions. From a
practical standpoint, our module extracts the processor feature flag and
check related capabilities, selecting at runtime the best set of functions
supporting the most advanced ISA (AVX-512, AVX2 or AVX/SSE), or
fallback to the default basic module if the processor has no support
for such extensions, as shown in Fig. 4. To be more specific, we
explicitly check CPUID — an instruction allowing software to discover
the processor details, determine processor type, and list the supported
features, such as SSE/AVXs.

Vector instructions can be integrated in applications in several
manners: (a) automatic vectorization support provided by the compiler;
(b) each application explicitly calls vector instructions from assembly

Parallel Computing 109 (2022) 102871D. Zhong et al.
Fig. 4. Procedural flow for detection and automatically activate the AVX component
into the Open MPI build system.

or via intrinsic functions; (c) adapting intrinsic functions into program-
ming models or languages for applications to use. The first strategy
by using auto-vectorization, relies entirely on the compiler capabilities,
but is portable and ‘‘future-proof", which means that it can adapt code
to any generation of processors with a simple re-compilation of the
code. However, to effectively use automatic vectorization, program-
mers must follow strict guidelines and restrictions for vectorizable code
that are dependent on the target architecture and provide compile-
time options largely dependent on a specific compiler’s capability and
efficiency. Programmers also need to be aware of the specifics of the
instructions that are supported by a processor. Additionally, compilers
have substantial limitations in the analysis and code transformations
phases that in many cases prevent an efficient identification of SIMD
parallelism in real applications [43]. The second method allows more
control over the very low-level instruction stream, but the use of in-
trinsics is time-consuming and error-prone for application programmers
and users. For this work, to integrate the use of AVX-512 features
in the widely used programming model Open MPI with the third
approach — we choose to use intrinsics and compile flags to guide
the compiler in the vectorization phase to maximize performance. We
hide the implementation complications in the Open MPI middleware,
and therefore many applications benefit from it without dealing with
low-level instructions.

A reduction is a typical operation encountered in many scientific
applications, and consist of applying the same, arithmetic, logic or bit-
wise operation on each data element of the input buffers. As such, these
operations have large amounts of data-level parallelism and should be
able to benefit from SIMD support.

A reduction operation performs element by element on the input
buffers, and traditionally is translated into code that executes as a
sequential operation but could possibly be vectorized under particular
circumstance or with a specific compiler or constraints. Sometimes it
may suffer from dependencies across multiple loop iterations. Fig. 5
illustrates the difference between a scalar operation and a vector op-
eration with AVXs and SVE instructions of different vector length,
respectively. It is an example of a vector instruction processing mul-
tiple elements simultaneously, compared to executing the additions
sequentially. A scalar processor would have to perform one load, one
computation, and one store instruction for every element. With some
code reordering, the load and stores could be rearranged to maximize
the use of available registers, but overall the performance of the code
is defined by the amount of data being fetched from the memory and
the depth of the arithmetical instructions. A vector processor performs
one load, one computation, and one store for multiple elements. More
specifically, AVX-512 SIMD-vector can process up to eight double-
precision floating-point numbers or 16 integer values. It also allows
5

Algorithm 1 AVX based reduction algorithm
types_per_step ⊳ Number of elements in vector
left_over ⊳ Number of elements waiting for reduction
count ⊳ Total number of elements for reduction operation
in_buf ⊳ Input buffer for reduction operation
inout_buf ⊳ Input and output buffer for reduction operation
sizeof_type ⊳ Number of bytes of the type of the in_buf and inout_buf

1: procedure ReductionOp(𝑖𝑛_𝑏𝑢𝑓 , 𝑖𝑛𝑜𝑢𝑡_𝑏𝑢𝑓 , 𝑐𝑜𝑢𝑛𝑡, 𝑡𝑦𝑝𝑒)
2: 𝑡𝑦𝑝𝑒𝑠_𝑝𝑒𝑟_𝑠𝑡𝑒𝑝 = 𝑣𝑒𝑐𝑡𝑜𝑟_𝑙𝑒𝑛𝑔𝑡ℎ / (8 × 𝑠𝑖𝑧𝑒𝑜𝑓 _𝑡𝑦𝑝𝑒)
3: #pragma unroll
4: for 𝑘 ← 0 to 𝑐𝑜𝑢𝑛𝑡 with increment of 𝑡𝑦𝑝𝑒𝑠_𝑝𝑒𝑟_𝑠𝑡𝑒𝑝 do
5: _mm512_loadu_si512 from 𝑖𝑛_𝑏𝑢𝑓 + 𝑜𝑓𝑓𝑠𝑒𝑡
6: _mm512_loadu_si512 from 𝑖𝑛𝑜𝑢𝑡_𝑏𝑢𝑓 + 𝑜𝑓𝑓𝑠𝑒𝑡
7: _mm512_reduction_op
8: _mm512_storeu_si512 to 𝑖𝑛𝑜𝑢𝑡_𝑏𝑢𝑓 + 𝑜𝑓𝑓𝑠𝑒𝑡
9: Update left_over and offset

10: if (𝑙𝑒𝑓 𝑡_𝑜𝑣𝑒𝑟 ≠ 0) then
11: Update 𝑡𝑦𝑝𝑒𝑠_𝑝𝑒𝑟_𝑠𝑡𝑒𝑝 >>= 1
12: if (𝑡𝑦𝑝𝑒𝑠_𝑝𝑒𝑟_𝑠𝑡𝑒𝑝 ≤ 𝑙𝑒𝑓 𝑡_𝑜𝑣𝑒𝑟) then
13: _mm256_loadu_si256 from 𝑖𝑛_𝑏𝑢𝑓 + 𝑜𝑓𝑓𝑠𝑒𝑡
14: _mm256_loadu_si256 from 𝑖𝑛𝑜𝑢𝑡_𝑏𝑢𝑓 + 𝑜𝑓𝑓𝑠𝑒𝑡
15: _mm256_reduction_op
16: _mm256_storeu_si256 to 𝑖𝑛𝑜𝑢𝑡_𝑏𝑢𝑓 + 𝑜𝑓𝑓𝑠𝑒𝑡
17: Update left_over and offset
18: if (𝑙𝑒𝑓 𝑡_𝑜𝑣𝑒𝑟 ≠ 0) then
19: Update 𝑡𝑦𝑝𝑒𝑠_𝑝𝑒𝑟_𝑠𝑡𝑒𝑝 >>= 1
20: if (𝑡𝑦𝑝𝑒𝑠_𝑝𝑒𝑟_𝑠𝑡𝑒𝑝 ≤ 𝑙𝑒𝑓 𝑡_𝑜𝑣𝑒𝑟) then
21: _mm_llddqu_si128 from 𝑖𝑛_𝑏𝑢𝑓 + 𝑜𝑓𝑓𝑠𝑒𝑡
22: _mm_llddqu_si128 from 𝑖𝑛𝑜𝑢𝑡_𝑏𝑢𝑓 + 𝑜𝑓𝑓𝑠𝑒𝑡
23: _mm128_reduction_op
24: _mm_storeu_si128 to 𝑖𝑛𝑜𝑢𝑡_𝑏𝑢𝑓 + 𝑜𝑓𝑓𝑠𝑒𝑡
25: Update left_over and offset
26: if (𝑙𝑒𝑓 𝑡_𝑜𝑣𝑒𝑟 ≠ 0) then
27: while (𝑙𝑒𝑓 𝑡_𝑜𝑣𝑒𝑟 ≠ 0) do
28: Set case_value
29: Switch(case_value) : {8 Cases}
30: Update left_over

Fig. 5. Example of single precision floating-point operation using : () scalar standard
C code operation, () AVXs 128 bits ∼ 512 bits SIMD vector of 4,8,16 values operation;
() SVE 128 bits ∼ 2048 bits SIMD vector of different values operation.

the computation of those elements by executing a single instruction.
AVX-512 reduction instructions perform arithmetic horizontally across
active elements of a single source vector and deliver a scalar result. Arm
SVE supports vector length up to 2048 bits, allowing more extensive
reduction operations with more elements in a long vector.

3.5. Implementations with AVXs

Intel AVX-512 intrinsic provides arithmetic reduction operation
for integer and float-pointing, and also supports logical and bit-wide
reduction operations on integer type. This gives the chance to create
AVX-512 intrinsic-based reduction support in MPI which will highly
increase MPI local reduction’s performance. Additionally, AVX-512 can

Parallel Computing 109 (2022) 102871D. Zhong et al.

c
i

Table 1
Supported types and operations.

Types Uint8–uint64 Float Double

MAX � � �
MIN � � �
SUM � � �
PROD � � �
BOR � – –
BAND � – –
BXOR � – –

Table 2
Supported CPU flags.

Instruction sets CPU flags (op_avx/sse_support value)

AVXs AVX512BW (0 × 200) AVX512F (0 × 100)
AVX2 (0 × 020)) AVX (0 × 010)

SSE SSE4 (0 × 08) SSE3 (0 × 04)
SSE2 (0 × 02)) SSE (0 × 01)

perform scatter reduction operations with the support of predicate
register, which behaves in a vectorized manner. This could lift the
restriction of a contiguous memory layout for reduction operation, and
allow for non-contiguous data sets, but such operations are not needed
for the predefined MPI reduction operations. For our optimized reduc-
tion operation, we employ and apply multiple methods to investigate
how to achieve the best performance on different processors, as shown
in algorithm 1. For a more detailed description, in the rest of the paper,
we assume that the hardware supports AVX-512. In the algorithm’s for-
loop section we explicitly use 512 bits long vector loads and stores
for memory operation rather than using the memory copy (memcpy)
function provided by the standard library, because some compilers may
not perform the best assembling techniques of using ZMM registers for
load and store. Once we have the elements loaded in registers, the
corresponding vector operation is used to perform the reduction on the
entire vector register. We repeat this pattern with a full 512 bits until
the remainders cannot fulfill a 512 bits vector, then we fallback to use
a lesser vectorization technique, such as using YMM registers to process
elements that fit in the 256 bits registers, then 128 bits operations and
finally, where necessary, executing few the operation on the remaining
few elements.

We have noticed that during the last part of the reduction operation
and depending on the number of elements on which to apply the
operation, significant execution time is often spent in the epilogue, that
deals with the remainder, those few elements that cannot fill a full
vector register. Intel provides AVX mask intrinsics for mask operations
that can vectorize the remainder loop. Still, significant overhead is
involved in creating and initializing the mask and executing a separate
and additional code path, which can result in lower SIMD efficiency.
The vectorized remainder loops can be even slower than the scalar
executions due to the overhead of masked operations and hardware.
Typically, the compiler can determine if the remainder should be
vectorized based on an estimate of the potential performance benefit.
When trip count information for a loop is unavailable, however, it will
be difficult for the compiler to make the right decision. Therefore, for
the remainder, we use Duff’s device, manually implementing a loop
unrolling approach by interleaving two syntactic constructs of C: the
do-while loop and a switch statement, which helps the compiler to
optimize the device correctly.

Table 1 shows the variety of data types and abbreviations for MPI
reduction operation handle names that are supported in our optimized
reduction operation module, which matches the combination of types
and operations defined by the MPI standard. Table 2 lists the supported
x86 instruction set architectures and related CPU flags from legacy SSE
to the latest AVX-512 instruction sets, together with the corresponding
6

op_avx_support values that can be used to select which AVXs to use if
they are supported by the hardware. To be noted, our work mainly fo-
cuses on the ‘‘Fundamental" feature instruction set with flag AVX512F,
available on Knights Landing processors and Intel Xeon processors. It
contains vectorized arithmetic operations, comparisons, type conver-
sions, data movement, data permutation, bitwise logical operations on
vectors and masks, and miscellaneous math functions. The AVX-512BW
(Byte and Word) support offers basic arithmetic operations and masking
for 512-bit vectors of byte-size (8-bit) and word-size (16-bit) integer
elements. This is similar to the core feature set of the AVX2 instruction
set, but with more comprehensive and more extended registers, and
more functional supports for float-pointing and integer.

3.6. Implementations with SVE

We implemented our SVE-based reduction with Arm C language
extension (ACLE) using intrinsics. As shown in algorithm 2, ACLE uses a
variable vector length which can be accessed at runtime by function call
of svcntb() | svcnth() | svcntw() | svcntd() to determine the number
of 8, 16, 32, 64-bit elements in the vector. As previously mentioned,
Open MPI uses a modular architecture, and we added another reduction
module in the operation framework enabled only on Arm architectures
with SVE support. We compiled using Arm HPC compile 20.0, enabling
SVE extensions using the flag -march=armv8-a+sve. As with AVX
reduction, our SVE implementation also supports different data types
and abbreviations for MPI reduction operations, as defined by the MPI
standard.

Algorithm 2 Arm SVE based reduction algorithm
types_per_step ⊳ Number of elements in vector
left_over ⊳ Number of elements waiting for reduction
ount ⊳ Total number of elements for reduction operation
n_buf ⊳ Input buffer for reduction operation

inout_buf ⊳ Input and output buffer for reduction operation

1: procedure ReductionOp(𝑖𝑛_𝑏𝑢𝑓 , 𝑖𝑛𝑜𝑢𝑡_𝑏𝑢𝑓 , 𝑐𝑜𝑢𝑛𝑡, 𝑡𝑦𝑝𝑒)
2: #svcnt*: Count the number of 8,16,32,64-bit elements in a

vector
3: 𝑡𝑦𝑝𝑒𝑠_𝑝𝑒𝑟_𝑠𝑡𝑒𝑝 = svcntb ∣ svcnth ∣ svcntw ∣ svcntd
4: #pragma unroll
5: for 𝑘 ← 0 to 𝑐𝑜𝑢𝑛𝑡 with increment of 𝑡𝑦𝑝𝑒𝑠_𝑝𝑒𝑟_𝑠𝑡𝑒𝑝 do
6: svld1 from 𝑖𝑛_𝑏𝑢𝑓 + 𝑜𝑓𝑓𝑠𝑒𝑡
7: svld1 from 𝑖𝑛𝑜𝑢𝑡_𝑏𝑢𝑓 + 𝑜𝑓𝑓𝑠𝑒𝑡
8: sv_reduction_op
9: svst1 to 𝑖𝑛𝑜𝑢𝑡_𝑏𝑢𝑓 + 𝑜𝑓𝑓𝑠𝑒𝑡

10: Update left_over and offset
11: if (𝑙𝑒𝑓 𝑡_𝑜𝑣𝑒𝑟 ≠ 0) then
12: while (𝑙𝑒𝑓 𝑡_𝑜𝑣𝑒𝑟 ≠ 0) do
13: Set case_value
14: Switch(case_value) : {8 Cases}
15: Update left_over

4. MPI reduction benchmark evaluation

4.1. Intel Xeon architecture

We conduct our experiments on a local cluster, which is an Intel(R)
Xeon(R) Gold 6254 (AVX512F) based server running at 3.10 GHz.
Our work is based upon Open MPI master branch, git commit hash
#75a539 [44]. Each experiment is repeated 30 times, and we present
the average results. We use a single node with one process for all tests,
because our optimization aims to improve the performance of the com-
putation part of reduction operation rather than the communication.

This section compares the performance of the reduction operations
with two implementations. For Open MPI default reduction operation

Parallel Computing 109 (2022) 102871D. Zhong et al.
Fig. 6. Comparison of MPI_SUM for MPI_UINT8_T with and without AVX-512, with
the memcpy operation.

Fig. 7. Comparison of MPI_BAND for MPI_UINT8_T with and without AVX-512, with
the memcpy operation.

base module, it performs element-wise computation across two input
buffers. For each loop iteration, it processes two elements. Our new
implementation uses AVX-512 vector instruction executing reduction
operation on the same inputs. But for each iteration, it deals with two
vectors containing all the elements within the vectors which represent
a vector-wise operation. For the reduction benchmark, we use the
MPI_Reduce_local function call to perform the local reduction for all
supported MPI reduction operations utilizing an array of different sizes.

We compare the predefined MPI operations, the arithmetic SUM and
the logical BAND using input buffers with sizes in the range from 1 KB
to 128MB. For the experiments, we minimized the potential impact of
preloaded caches by flushing the L1 and L2 cache after each test to
ensure we are not reusing data from the cache (especially for buffers
size below the cache size).

Figs. 6 and 7 show the time-to-completion for the MPI_SUM and
MPI_BAND for the same MPI predefined type (MPI_UINT8_T). Different
shapes of symbols (stars, circles, arrows) represent outlier data that
extend beyond the whiskers. It should be noted that the default com-
piler on the platform, failed to generate auto-vectorized code despite
our best efforts (i.e. providing all the documented optimization flags).
Our optimization uses intrinsics which give us complete control of the
low-level details at the expense of productivity and portability.

Results demonstrate that using AVX-512 enabled operation the
performance can be improved seven times faster compared with the
default, element-wise operation. As expected, the improvement is de-
pendent to the number of elements in the reduction buffer, small
number of elements showing a small improvement that increases once
the buffer size becomes larger than 4 KB, where the performance
7

Fig. 8. AMD EPYC 7302 16-Core Processor: Comparison of MPI_BAND for MPI_UINT8_T
with and without AVX2, with the memcpy operation.

improvement becomes considerable. For the sake of completeness, We
compare the MPI operations with the memory copy (memcpy) opera-
tion, under the assumption that the vendor provided implementation
of memcpy is highly optimized for the target architecture, and would
therefore provide an upper bound. To make a fair comparison, we
list the complete execution sequence of reduction operation and mem-
ory copy operation. In terms of memory accesses, the MPI reduction
operation needs two loads from both input buffers, the computation
between these two elements, followed by one store to save the results
into memory. The memcpy operation needs only one load from the
source buffer and one store to the destination buffer. The result shows
that even with an additional computation included, our optimized AVX-
512 reduction operation achieves a high level of memory bandwidth
comparable to memory copy. When the reduction buffer size increases,
our implementation achieves similar performance as memory copy,
which indicates that our approach is capable to take full advantage of
all the available memory bandwidth.

4.2. AMD Zen 2 architecture

AMD’s new Zen architecture supports all the x86 vector instructions
such as SSE and AVX2. However, the data paths are only 128 bits wide,
and as a result 256-bit wide operations are carried out as two indepen-
dent 128-bit operations, which means 256-bit operations will use up
twice as many hardware resources to complete (registers and compute
units). Thus, the peak throughput is four SSE/AVX-128 instructions or
two AVX-256 instructions per cycle.

The Zen 2 architecture doubles the physical registers’ width, execu-
tion units, and data paths to 256 bits. This improvement doubles the
peak throughput of AVX-256 instructions to four per cycle, or in other
words, up to 32 FLOPs/cycle in single precision or up to 16 FLOPs/cycle
in double precision.

We conducted our benchmark experiments on an EPYC 7302
processor-based cluster, which is based on the Zen 2 microarchitec-
ture with a base frequency of 3.0 GHz, supporting AVX and AVX2
instructions.

Fig. 8 show the result for the MPI_SUM operation on buffers with
various sizes ranging from 1 KB to 128MB. We can see that our AVX2
reduction operations perform about five times faster than the default
operations in Open MPI for all the tested sizes. When compared with
the memory copy operations, our optimized operations achieve almost
the same memory bandwidth, which implies that the computation is
totally overlapped with memory operation.

Parallel Computing 109 (2022) 102871D. Zhong et al.
Fig. 9. Arm A64FX: Comparison of MPI_SUM with SVE (Vector Length = 512bits)
reduction enable and disable for MPI_UINT8_T together with memcpy.

4.3. Arm-v8 architecture: A64FX

We conducted our performance evaluation experiments on the new
A64FX processor, which supports SVE operations with vector length of
256 bits and 512 bits. Fig. 9 shows the results of the MPI_SUM operation
from the Open MPI default implementation, the SVE optimized imple-
mentation and the memory copy operation. We can see that, under
all tested reduction buffer size, our SVE optimized operation is five
times faster than element-wise operation, and obtains a similar memory
bandwidth to the memory copy operation.

5. Performance tool evaluation

To understand the performance, we analyzed our AVX-512 enabled
Open MPI reduction operation using Performance API (PAPI) [45]
– a tool that can expose hardware counters, allowing developers to
correlate these counters with the application performance. PAPI is a
portable and efficient API to access hardware performance monitor-
ing registers/counters found on most modern microprocessors. These
counters exist as a small set of registers that count ‘‘events", which
are occurrences of specific signals and states related to the processor’s
function. Monitoring these events facilitates correlation between the
structure of executed code, and indirectly of the source or object code,
with the efficiency of executing this code on the underlying architec-
ture. This correlation has a variety of uses in performance analysis and
tuning.

We aim to use PAPI’s hardware performance counters to measure
two aspects: (1) Memory operation instructions: the total number of
load and store instructions. (2) Branching instructions: number of
branch execution instructions separated into branch instructions taken
and not-taken, instructions mispredicted and instructions correctly pre-
dicted. All these events have a significant impact on performance.

Fig. 10 shows the total number of instructions, and memory ac-
cess instructions of load and store, and branch instructions. Due to
the stability of the results we choose not to clutter the graphs with
additional information, such as the standard deviation. We can see that
for our optimized reduction operation, the total number of instructions
is largely decreased. Also, memory access and branch instructions have
decreased compared to the default implementation in Open MPI. The
reason of all this is straightforward: longer vectors load and store more
elements with each single instruction compared with non-vector loads
and stores, which means that we need fewer loads and stores dealing
with the same amount of reduction data. Our implementation decreased
the number of loads and stores instructions by a factor of 90X and
60X, respectively. At the same time, for branching instructions, our
optimization decreased by 60X. We also investigated the cache misses
8

Fig. 10. Comparison between AVX-512 optimized Open MPI and default Open MPI for
MPI_SUM reduction with PAPI instruction events overview.

Fig. 11. Comparison between AVX-512 optimized Open MPI and default Open MPI for
MPI_SUM reduction with PAPI branch counters.

of L1 and L2 caches. Because we are dealing with large buffers of
contiguous data, this means data access patterns are very regular and
therefore easy to predict by even a basic prefetcher algorithm. All
predicted accesses would be consumed so that the cache misses do not
show significant variation.

Fig. 11 illustrates the instruction count details of branch instructions
of both AVX-512 optimized implementation and the default element-
wise reduction method. By using long vectors, we largely decreased the
‘‘for loop" of the reduction operation. Consequently, the AVX-512 code
has much less control and branching instructions, and therefore less
opportunity to mispredict the branching outcome.

6. LAMMPS application evaluation

Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS)
[46] is a molecular dynamics simulation tool from Sandia National
Laboratories. It provides different benchmark datasets representing a
range of simulation styles and computational expense for molecular-
level interaction forces. In our experimental analysis, we evaluate the
performance of our reduction operation with LAMMPS granular flow

Parallel Computing 109 (2022) 102871D. Zhong et al.
Fig. 12. LAMMPS chute: loop time on 24 procs for 100 steps with 259200000 atoms
with different AVX capabilities.

benchmark using the dataset from chute flow (in.chute.scaled). The
benchmark reports the ‘‘Loop Time’’ as a measure of time required to
simulate a set of molecular interactions. We run the benchmark with
24 processes (process grid: 4 × 2 × 3) on an Intel(R) Xeon(R) Gold
6254 CPU with different capabilities of AVX support, including single
AVX, AVX2 and AVX512 Our implementation allows restricting the
vector capabilities used for MPI reduction operations via the modular
parameter of –mca op_avx_support .

Fig. 12 presents the loop time of LAMMPS chute benchmark running
on 24 processes for 100 steps with 259200000 atoms using different
AVX capabilities. Different collective operations are commonly and
frequently used in LAMMPS benchmark (eg. MPI_Allreduce). We can
see, without AVX support for the reduction operations as shown in red,
the latency of the loop is 651.5. With the optimization of using AVX
and AVX2, we archive 11% speedup of the total application’s executing
time. Enabling AVX512 support provides an additional performance
boost, to up to 13.4% speedup. Tuning the switch points between the
different vector instructions provides an additional performance boost,
with a maximum speedup of 14.7%.

7. Deep learning application evaluation

Over the past few years, advancements in deep learning have driven
tremendous improvement, among other to image processing, computer
vision, speech recognition, robotics and control, natural language pro-
cessing. One of the significant challenges of deep learning is to decrease
the extremely time-consuming cost of the training process. Designing a
deep learning model requires design space exploration of a large num-
ber of hyper-parameters and processing big data. Thus, accelerating the
training process is critical for research and production. Distributed deep
learning is one of the essential technologies in reducing training time.
The critical aspect to understand in deep learning is that it needs to cal-
culate and update the gradient to adjust the overall weights. Processes
need to prepare and calculate all the gradient data, which is usually
very large. When such data and calculations are too extensive, users
need to parallelize these calculations and computations. It indicates
that the training needs to be executed on distributed computing nodes
working together with each node working on a subset of the data.
When each of these processing units or workers (CPUs, GPUs, TPUs,
etc.) is done calculating the gradient for its subset; they then need to
communicate its results to the rest of the processes involved.
9

Fig. 13. tf_cnn_benchmarks results using Horovod (model: alexnet) on stampede2 with
AVX-512 default Open MPI and optimized Open MPI.

In this section, we investigate and experiment on Horovod [47]
- an open-source component of Michelangelo’s deep learning toolkit,
which makes it easier to start and speed up distributed deep learn-
ing projects with TensorFlow. Horovod utilizes Open MPI to launch
copies of the TensorFlow program. Open MPI will transparently set up
the distributed infrastructure necessary for processes to communicate
with each other. All the user needs to do is to modify their program
to average gradients using an MPI_Allreduce operation. Conceptually,
MPI_Allreduce forces each participating process to share its data with
all other processes and applies a reduction operation. This operation
can be any reduction operation, such as a sum, max, or min. In other
words, it reduces the target arrays in all processes to a single array
and returns the result array to all processes. Horovod uses a ring
MPI_Allreduce approach, which is a bandwidth optimal [38] algorithm
if the tensors are large enough, but does not work as efficiently for
smaller tensors. Horovod can also use a Tensor Fusion — an algorithm
that fuses tensors together before it calls ring MPI_Allreduce. The fusion
method allocates a large fusion buffer and executes the MPI_Allreduce
operation on the fusion buffer. In the ring MPI_Allreduce algorithm,
each of 𝑁 nodes communicates with two of its peers 2 ∗(N - 1) times.
During this communication, a node sends and receives chunks of the
data buffer. In the first 𝑁 − 1 iterations, received values are added to
the values in the node’s buffer. In the second 𝑁 − 1 iterations, after
each process receives the data from the previous process, it applies the
reduction and proceeds to send it again to the next process in the ring.
We can see that during the MPI_Allreduce processing phase, there are
𝑃 ∗(N - 1) reduction operations that occurred with big fusion buffer
size, which is very computation intensive. Our AVX-512 optimized
reduction operations can significantly improve the performance of the
computation and reduction part of those collective operations.

We conducted our experiments on Stampede2 with Intel Xeon Plat-
inum 8160 nodes. Each node has 48 cores with two sockets and it
has 192 GB DDR4 memory. Each core has 32 KB L1 data cache and
1MB L2. The nodes are connected via Intel Omni-Path network. We
experimented with TensorFlow CNN benchmarks using Horovod with
tensorflow-1.13.1.

Fig. 13 shows the performance comparison of our AVX-512 opti-
mized reduction operation and the default reduction operation in Open
MPI for Horovod (with synthetic datasets and AlexNet model) to train
an application called tf_cnn_benchmarks [48]. Comparing to default
element-wise reduction implementations, with the increasing number
of processes, our design shows increasing improvements, which start at
5.45% and eventually rise to 12.38% faster than default Open MPI on
192 processes and 1536 processes, respectively. We intend to include
both communication and computation in the measurement to show

Parallel Computing 109 (2022) 102871D. Zhong et al.

a
i
l
u
a

8

A
o
d
a
r
m
f
d
a
a
r
f
d
v
A
a
u
n
o
a
i
t
p
a
t
t
M

D

p
w
1

A

F
C
o
N
l
p
t
h

R
the performance benefit from our design to the application’s overall
completion time. It can be observed that the performance benefit
increases with more processes/nodes, because in the experiments we
set 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 32 which means 32 samples from the training dataset
re used to calculate the gradient to update the weights. This translate
nto the more MPI processes participate in the reduction operation, the
arger the data is. Thus, the fact that each one of them is simultaneously
sing our AVXs optimized Open MPI operations drives up the overall
pplication performance.

. Conclusion

In this paper, we pragmatically demonstrated the benefits of Intel
VX, AVX2, AVX-512 and Arm SVE vector operations in the context
f MPI reduction operations. We assess the performance advantages of
ifferent features introduced by AVX and extended our investigation
nd analysis to a fully-fledged implementation of all predefined MPI
eduction operations. We implemented these new reduction operation
odules in Open MPI using AVXs’ and SVE intrinsic supporting dif-

erent kinds of MPI reduce operations for multiple MPI types. We
emonstrated the efficiency of our vector reduction operation using
benchmark calling MPI_Reduce_local. Experiments are conducted on

n Intel Xeon Gold cluster, which highlights that AVX-512 enabled
eduction operations can achieve 10X performance improvement. To
urther validate the performance improvements, experiments are con-
ucted with different applications: (1) Using LAMMPS benchmark with
ariety AVXs support show speedup from 14% to 34% with different
VX capability combination. (2) Experiment with a deep learning
pplication using distributed model Horovod, which calculates and
pdates the gradient to adjust the weights using an MPI_Allreduce. Our
ew reduction strategy achieved a significant speedup across all ranges
f processes, with a 12.38% improvement with 1536 processes. Our
nalysis and implementation of Open MPI optimization provide useful
nsights and guidelines on how wide vector operations, in this case, In-
el AVX extensions, can be used in actual high-performance computing
latforms and software to improve the efficiency of parallel runtimes
nd applications. Our long vector optimized Open MPI proves that
aking advantage of hardware capabilities remains of critical interest
o software development, and that even a small improvement in the
PI implementation can have a significant impact on applications.

eclaration of competing interest

No author associated with this paper has disclosed any potential or
ertinent conflicts which may be perceived to have impending conflict
ith this work. For full disclosure statements refer to https://doi.org/
0.1016/j.parco.2021.102871.

cknowledgments

This material is based upon work supported by the National Science
oundation, United States under Grant No. (1664142); and the Exascale
omputing Project, United States (17-SC-20-SC), a collaborative effort
f the U.S. Department of Energy Office of Science and the National
uclear Security Administration, United States. The authors would also

ike to thank the Texas Advanced Computing Center (TACC). For com-
uter time, this research used the Stampede2 flagship supercomputer of
he Extreme Science and Engineering Discovery Environment (XSEDE)
10

osted at TACC.
eferences

[1] H. Caminal, D. Caballero, J.M. Cebrián, R. Ferrer, M. Casas, M. Moretó, X.
Martorell, M. Valero, Performance and energy effects on task-based parallelized
applications, J. Supercomput. 74 (6) (2018) 2627–2637.

[2] T. Röhl, J. Eitzinger, G. Hager, G. Wellein, Validation of hardware events for
successful performance pattern identification in high performance computing, in:
A. Knüpfer, T. Hilbrich, C. Niethammer, J. Gracia, W.E. Nagel, M.M. Resch (Eds.),
Tools for High Performance Computing 2015, Springer International Publishing,
Cham, 2016, pp. 17–28.

[3] R. Espasa, M. Valero, J.E. Smith, Vector architectures: past, present and future,
in: Proceedings of the 12th International Conference on Supercomputing, 1998,
pp. 425–432.

[4] W.J. Watson, The TI ASC: a highly modular and flexible super computer
architecture, in: AFIPS ’72 (Fall, Part I), 1972.

[5] D. Molka, D. Hackenberg, R. Schöne, T. Minartz, W.E. Nagel, Flexible workload
generation for HPC cluster efficiency benchmarking, Comput. Sci. - Res. Dev. 27
(4) (2012) 235–243.

[6] D. Callahan, J. Dongarra, D. Levine, Vectorizing compilers: A test suite and
results, in: Proceedings of the 1988 ACM/IEEE Conference on Supercomputing,
Supercomputing ’88, IEEE Computer Society Press, Washington, DC, USA, 1988,
pp. 98–105.

[7] D. Levine, D. Callahan, J. Dongarra, A comparative study of automatic
vectorizing compilers, in: Benchmarking of High Performance Supercom-
puters, Parallel Comput. 17 (10) (1991) 1223–1244, http://dx.doi.org/
10.1016/S0167-8191(05)80035-3, URL http://www.sciencedirect.com/science/
article/pii/S0167819105800353.

[8] G. Mitra, B. Johnston, A.P. Rendell, E. McCreath, J. Zhou, Use of SIMD vector
operations to accelerate application code performance on low-powered arm and
intel platforms, in: 2013 IEEE International Symposium on Parallel Distributed
Processing, Workshops and Phd Forum, 2013, pp. 1107–1116.

[9] V. Pentkovski, S.K. Raman, J. Keshava, Implementing streaming SIMD extensions
on the pentium III processor, IEEE Micro 20 (04) (2000) 47–57, http://dx.doi.
org/10.1109/40.865866.

[10] P. Hammarlund, A.J. Martinez, A.A. Bajwa, D.L. Hill, E. Hallnor, H. Jiang, M.
Dixon, M. Derr, M. Hunsaker, R. Kumar, R.B. Osborne, R. Rajwar, R. Singhal, R.
D’Sa, R. Chappell, S. Kaushik, S. Chennupaty, S. Jourdan, S. Gunther, T. Piazza,
T. Burton, Haswell: The fourth-generation intel core processor, IEEE Micro 34
(2) (2014) 6–20.

[11] A. Sodani, R. Gramunt, J. Corbal, H. Kim, K. Vinod, S. Chinthamani, S. Hutsell,
R. Agarwal, Y. Liu, Knights landing: Second-generation intel xeon phi product,
IEEE Micro 36 (2) (2016) 34–46, http://dx.doi.org/10.1109/MM.2016.25.

[12] Intel, Intel 64 and IA-32 architectures software developer’s manual volume 1:
Basic architecture, 2019, URL https://software.intel.com/en-us/download/intel-
64-and-ia-32-architectures-software-developers-manual-volume-1-basic-
architecture.

[13] Intel, Intel 64 and IA-32 architectures software developer manuals, 2016, URL
https://software.intel.com/en-us/articles/intel-sdm.

[14] D.S. McFarlin, V. Arbatov, F. Franchetti, M. Püschel, Automatic SIMD vector-
ization of fast Fourier transforms for the larrabee and AVX instruction sets,
in: Proceedings of the International Conference on Supercomputing, ICS’11,
Association for Computing Machinery, New York, NY, USA, 2011, pp. 265–274,
http://dx.doi.org/10.1145/1995896.1995938.

[15] Intel, 64-Ia-32-architectures instruction set extensions reference manual, 2019,
URL https://software.intel.com/en-us/articles/intel-sdm.

[16] Arm, Arm architecture reference manual armv8, for Armv8-A architec-
ture profile, 2018, URL https://developer.arm.com/docs/ddi0487/latest/arm-
architecture-reference-manual-armv8-for-armv8-a-architecture-profile.

[17] S. Flur, K.E. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget, W. Deacon,
P. Sewell, Modelling the Armv8 architecture, operationally: Concurrency and
ISA, in: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’16, ACM, New York, NY, USA,
2016, pp. 608–621, http://dx.doi.org/10.1145/2837614.2837615, URL http://
doi.acm.org/10.1145/2837614.2837615.

[18] M. Boettcher, B.M. Al-Hashimi, M. Eyole, G. Gabrielli, A. Reid, Advanced
SIMD: Extending the reach of contemporary simd architectures, in: 2014 Design,
Automation Test in Europe Conference Exhibition (DATE), 2014, pp. 1–4, http:
//dx.doi.org/10.7873/DATE.2014.037.

[19] A. Armejach, H. Caminal, J.M. Cebrian, R. González-Alberquilla, C. Adeniyi-
Jones, M. Valero, M. Casas, M. Moretó, Stencil codes on a vector length agnostic
architecture, in: Proceedings of the 27th International Conference on Parallel
Architectures and Compilation Techniques, PACT ’18, ACM, New York, NY,
USA, 2018, pp. 13:1–13:12, http://dx.doi.org/10.1145/3243176.3243192, URL
http://doi.acm.org/10.1145/3243176.3243192.

[20] M. P. I. Forum, MPI: A message-passing interface standard version 4.0, 2020,
URL https://www.mpi-forum.org.

[21] L. Bottou, Large-scale machine learning with stochastic gradient descent, in: Y.
Lechevallier, G. Saporta (Eds.), Proceedings of COMPSTAT’2010, Physica-Verlag
HD, Heidelberg, 2010, pp. 177–186.

https://doi.org/10.1016/j.parco.2021.102871
https://doi.org/10.1016/j.parco.2021.102871
https://doi.org/10.1016/j.parco.2021.102871
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb1
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb1
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb1
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb1
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb1
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb2
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb2
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb2
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb2
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb2
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb2
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb2
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb2
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb2
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb5
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb5
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb5
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb5
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb5
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb6
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb6
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb6
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb6
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb6
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb6
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb6
http://dx.doi.org/10.1016/S0167-8191(05)80035-3
http://dx.doi.org/10.1016/S0167-8191(05)80035-3
http://dx.doi.org/10.1016/S0167-8191(05)80035-3
http://www.sciencedirect.com/science/article/pii/S0167819105800353
http://www.sciencedirect.com/science/article/pii/S0167819105800353
http://www.sciencedirect.com/science/article/pii/S0167819105800353
http://dx.doi.org/10.1109/40.865866
http://dx.doi.org/10.1109/40.865866
http://dx.doi.org/10.1109/40.865866
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb10
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb10
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb10
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb10
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb10
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb10
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb10
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb10
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb10
http://dx.doi.org/10.1109/MM.2016.25
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture
https://software.intel.com/en-us/articles/intel-sdm
http://dx.doi.org/10.1145/1995896.1995938
https://software.intel.com/en-us/articles/intel-sdm
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
http://dx.doi.org/10.1145/2837614.2837615
http://doi.acm.org/10.1145/2837614.2837615
http://doi.acm.org/10.1145/2837614.2837615
http://doi.acm.org/10.1145/2837614.2837615
http://dx.doi.org/10.7873/DATE.2014.037
http://dx.doi.org/10.7873/DATE.2014.037
http://dx.doi.org/10.7873/DATE.2014.037
http://dx.doi.org/10.1145/3243176.3243192
http://doi.acm.org/10.1145/3243176.3243192
https://www.mpi-forum.org
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb21
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb21
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb21
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb21
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb21

Parallel Computing 109 (2022) 102871D. Zhong et al.
[22] Z. Li, J. Davis, S. Jarvis, An efficient task-based all-reduce for machine learning
applications, 2017, pp. 1–8, http://dx.doi.org/10.1145/3146347.3146350.

[23] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep
convolutional neural networks, in: F. Pereira, C.J.C. Burges, L. Bottou, K.Q.
Weinberger (Eds.), Advances in Neural Information Processing Systems 25,
Curran Associates, Inc., 2012, pp. 1097–1105, URL http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.

[24] P. Moritz, R. Nishihara, I. Stoica, M.I. Jordan, SparkNet: Training deep networks
in spark, 2015, arXiv:1511.06051.

[25] R. Lim, Y. Lee, R. Kim, J. Choi, An implementation of matrix–matrix multiplica-
tion on the Intel KNL processor with AVX-512, Cluster Comput. 21 (4) (2018)
1785–1795.

[26] R. Kim, J. Choi, M. Lee, Optimizing parallel GEMM routines using auto-tuning
with intel AVX-512, in: Proceedings of the International Conference on High
Performance Computing in Asia-Pacific Region, HPC Asia 2019, Association for
Computing Machinery, New York, NY, USA, 2019, pp. 101–110, http://dx.doi.
org/10.1145/3293320.3293334.

[27] B. Bramas, A novel hybrid quicksort algorithm vectorized using AVX-512 on
Intel Skylake, Int. J. Adv. Comput. Sci. Appl. 8 (10) (2017) http://dx.doi.org/
10.14569/ijacsa.2017.081044.

[28] M.G.F. Dosanjh, W. Schonbein, R.E. Grant, P.G. Bridges, S.M. Gazimirsaeed, A.
Afsahi, Fuzzy matching: Hardware accelerated MPI communication middleware,
in: 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), 2019, pp. 210–220, http://dx.doi.org/10.1109/CCGRID.
2019.00035.

[29] A. Armejach, H. Caminal, J.M. Cebrian, R. Langarita, R. González-Alberquilla,
C. Adeniyi-Jones, M. Valero, M. Casas, M. Moretó, Using arm’s scalable vector
extension on stencil codes, J. Supercomput. (2019).

[30] D.A. Iliescu, Arm scalable vector extension and application to machine learn-
ing, 2018, URL https://developer.arm.com/solutions/hpc/resources/hpc-white-
papers/arm-scalable-vector-extensions-and-application-to-machine-learning.

[31] D. Zhong, P. Shamis, Q. Cao, G. Bosilca, S. Sumimoto, K. Miura, J. Dongarra,
Using arm scalable vector extension to optimize OPEN MPI, in: 2020 20th
IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing
(CCGRID), 2020, pp. 222–231.

[32] D. Zhong, Q. Cao, G. Bosilca, J. Dongarra, Using advanced vector extensions
AVX-512 for MPI reductions, eurompi/usa ’20, Association for Computing
Machinery, New York, NY, USA, 2020, pp. 1–10, http://dx.doi.org/10.1145/
3416315.3416316.

[33] C. Gómez, F. Mantovani, E. Focht, M. Casas, Efficiently running SpMV on long
vector architectures, in: Proceedings of the 26th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’21, Association for
Computing Machinery, New York, NY, USA, 2021, pp. 292–303, http://dx.doi.
org/10.1145/3437801.3441592.

[34] J.L. Träff, Transparent neutral element elimination in MPI reduction operations,
in: R. Keller, E. Gabriel, M. Resch, J. Dongarra (Eds.), Recent Advances in the
Message Passing Interface, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010,
pp. 275–284.

[35] M. Hofmann, G. Rünger, MPI Reduction operations for sparse floating-point data,
in: A. Lastovetsky, T. Kechadi, J. Dongarra (Eds.), Recent Advances in Parallel
Virtual Machine and Message Passing Interface, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008, pp. 94–101.
11
[36] C. Chu, K. Hamidouche, A. Venkatesh, A.A. Awan, D.K. Panda, CUDA kernel
based collective reduction operations on large-scale GPU clusters, in: 2016 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), 2016, pp. 726–735, http://dx.doi.org/10.1109/CCGrid.2016.111.

[37] X. Luo, W. Wu, G. Bosilca, Y. Pei, Q. Cao, T. Patinyasakdikul, D. Zhong, J.
Dongarra, HAN: a hierarchical AutotuNed collective communication framework,
in: 2020 IEEE International Conference on Cluster Computing (CLUSTER), 2020,
pp. 23–34, http://dx.doi.org/10.1109/CLUSTER49012.2020.00013.

[38] P. Patarasuk, X. Yuan, Bandwidth optimal all-reduce algorithms for clusters of
workstations, J. Parallel Distrib. Comput. 69 (2) (2009) 117–124, http://dx.doi.
org/10.1016/j.jpdc.2008.09.002.

[39] H. Shan, S. Williams, C.W. Johnson, Improving MPI Reduction Performance
for Manycore Architectures with OpenMP and Data Compression, in: 2018
IEEE/ACM Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS), 2018, pp. 1–11.

[40] Arm, Porting and optimizing HPC applications for arm SVE version 2.1,
2020, URL https://developer.arm.com/documentation/101726/0210/Port-and-
Optimize-your-Application-to-SVE-enabled-Arm-based-processors.

[41] E. Gabriel, G.E. Fagg, G. Bosilca, T. Angskun, J.J. Dongarra, J.M. Squyres, V.
Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R.H. Castain, D.J. Daniel, R.L.
Graham, T.S. Woodall, Open MPI: Goals, concept, and design of a next generation
MPI implementation, in: Proceedings, 11th European PVM/MPI Users’ Group
Meeting, Budapest, Hungary, 2004, pp. 97–104.

[42] D. Zhong, A. Bouteiller, X. Luo, G. Bosilca, Runtime level failure detection and
propagation in HPC systems, in: Proceedings of the 26th European MPI Users’
Group Meeting, EuroMPI ’19, Association for Computing Machinery, New York,
NY, USA, 2019, http://dx.doi.org/10.1145/3343211.3343225.

[43] S. Maleki, Y. Gao, M.J. Garzar’n, T. Wong, D.A. Padua, An evaluation of
vectorizing compilers, in: 2011 International Conference on Parallel Architectures
and Compilation Techniques, 2011, pp. 372–382.

[44] Open MPI main development repository, URL https://github.com/open-mpi/
ompi.

[45] D. Terpstra, H. Jagode, H. You, J. Dongarra, Collecting performance data with
PAPI-c, in: M.S. Müller, M.M. Resch, A. Schulz, W.E. Nagel (Eds.), Tools for High
Performance Computing 2009, Springer Berlin Heidelberg, Berlin, Heidelberg,
2010, pp. 157–173.

[46] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J.
Comput. Phys. 117 (1) (1995) 1–19, http://dx.doi.org/10.1006/jcph.1995.1039,
URL http://www.sciencedirect.com/science/article/pii/S002199918571039X.

[47] A. Sergeev, M.D. Balso, Horovod: fast and easy distributed deep learning in
TensorFlow, 2018, arXiv preprint arXiv:1802.05799.

[48] A benchmark framework for Tensorflow, URL https://github.com/tensorflow/
benchmarks.

http://dx.doi.org/10.1145/3146347.3146350
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1511.06051
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb25
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb25
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb25
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb25
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb25
http://dx.doi.org/10.1145/3293320.3293334
http://dx.doi.org/10.1145/3293320.3293334
http://dx.doi.org/10.1145/3293320.3293334
http://dx.doi.org/10.14569/ijacsa.2017.081044
http://dx.doi.org/10.14569/ijacsa.2017.081044
http://dx.doi.org/10.14569/ijacsa.2017.081044
http://dx.doi.org/10.1109/CCGRID.2019.00035
http://dx.doi.org/10.1109/CCGRID.2019.00035
http://dx.doi.org/10.1109/CCGRID.2019.00035
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb29
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb29
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb29
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb29
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb29
https://developer.arm.com/solutions/hpc/resources/hpc-white-papers/arm-scalable-vector-extensions-and-application-to-machine-learning
https://developer.arm.com/solutions/hpc/resources/hpc-white-papers/arm-scalable-vector-extensions-and-application-to-machine-learning
https://developer.arm.com/solutions/hpc/resources/hpc-white-papers/arm-scalable-vector-extensions-and-application-to-machine-learning
http://dx.doi.org/10.1145/3416315.3416316
http://dx.doi.org/10.1145/3416315.3416316
http://dx.doi.org/10.1145/3416315.3416316
http://dx.doi.org/10.1145/3437801.3441592
http://dx.doi.org/10.1145/3437801.3441592
http://dx.doi.org/10.1145/3437801.3441592
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb34
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb34
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb34
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb34
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb34
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb34
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb34
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb35
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb35
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb35
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb35
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb35
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb35
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb35
http://dx.doi.org/10.1109/CCGrid.2016.111
http://dx.doi.org/10.1109/CLUSTER49012.2020.00013
http://dx.doi.org/10.1016/j.jpdc.2008.09.002
http://dx.doi.org/10.1016/j.jpdc.2008.09.002
http://dx.doi.org/10.1016/j.jpdc.2008.09.002
https://developer.arm.com/documentation/101726/0210/Port-and-Optimize-your-Application-to-SVE-enabled-Arm-based-processors
https://developer.arm.com/documentation/101726/0210/Port-and-Optimize-your-Application-to-SVE-enabled-Arm-based-processors
https://developer.arm.com/documentation/101726/0210/Port-and-Optimize-your-Application-to-SVE-enabled-Arm-based-processors
http://dx.doi.org/10.1145/3343211.3343225
https://github.com/open-mpi/ompi
https://github.com/open-mpi/ompi
https://github.com/open-mpi/ompi
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb45
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb45
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb45
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb45
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb45
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb45
http://refhub.elsevier.com/S0167-8191(21)00113-7/sb45
http://dx.doi.org/10.1006/jcph.1995.1039
http://www.sciencedirect.com/science/article/pii/S002199918571039X
http://arxiv.org/abs/1802.05799
https://github.com/tensorflow/benchmarks
https://github.com/tensorflow/benchmarks
https://github.com/tensorflow/benchmarks

	Using long vector extensions for MPI reductions
	Introduction
	Related work
	Long vector extension
	MPI reduction operation

	Design and implementation
	Intel Advanced Vector Extension
	Arm-v8 Scalable Vector Extension
	Intrinsics
	Reduction operation in Open MPI
	Implementations with AVXs
	Implementations with SVE

	MPI reduction benchmark evaluation
	Intel Xeon architecture
	AMD Zen 2 architecture
	Arm-v8 architecture: A64FX

	Performance tool evaluation
	LAMMPS application evaluation
	Deep learning application evaluation
	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

